- Рассмотрим эти три типа уравнений:
1) ; 2)
; 3)
.
- Как же решать такие уравнения? Рассмотрим с вами примеры.
Пример 3. Решите уравнение: .
Решение: Разделим с Вами все части данного уравнения на число - 5 (не равное нулю) и получим равносильное уравнение: . Левую часть можем преобразовать по формуле сокращенного умножения – разности квадратов:
. Вспоминаем, что произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю. Получаем два линейных уравнения:
или
. Откуда находим:
,
.
Ответ: .
Пример 4. Решите уравнение: .
Решение: В предыдущем примере мы с вами применяли формулу сокращенного умножения. А в этом примере, на ваш взгляд, что мы должны выполнить? (Должны вынести общий множитель за скобки). Верно, в левой части уравнения выносим общий множитель за скобки и разложим ее на множители:
. Произведение множителей равно нулю, когда хотя бы один из них равен нулю. Получаем, как и в предыдущем примере, два линейных уравнения:
или
. Откуда:
.
Ответ: .
Пример 3. Решите уравнение: .
Решение: Мы с вами изучали решение уравнений вида: . Решением этого уравнения являются два числа:
Здесь у нас аналогичный вид, только число
. И в левой части при неизвестной стоит коэффициент -7. Мы можем разделить обе части данного уравнения на число -7 (не равное нулю). И получим:
. Откуда
. Или
. Следовательно, данное уравнение имеет единственный корень (или, говорят, два совпавших корня)
.
Ответ: 0.
На основе этого мы можем привести решение неполных квадратных уравнений в таблице:
Вид неполного квадратного уравнения. |
Корни уравнения. |
|
При |
При | |
|
|
|
|
Смотрите также::
Методические рекомендации по созданию педагогических условий в семье для
развития творческих способностей детей в музыкальной деятельности
С целью создания наиболее благоприятных условий в семье для развития творческих способностей детей в музыкальной деятельности мы предлагаем усилить взаимодействие педагогов ДОУ и родителей. Из анкетирования следует, что родители расположены к принятию новой информации по данному вопросу через консу ...
Некоторые теоретические подходы к определению понятия
"познавательный интерес"
Проблема интереса в современной науке представлена с различных позиций. В исследованиях М.Ф. Беляева15, А.А. Невского изучается психологическая природа интереса; в работах Ю.К. Бабанского16 познавательный интерес выступает в основном как средство обучения. Познавательный интерес рассматривается В.Н ...
Игра как средство обучения самостоятельности
Дошкольный возраст является наиболее ответственным этапом детства. Высокая сензитивность этого возрастного периода определяет большие потенциальные возможности разностороннего развития ребенка. Игра в тех формах, в каких она существовала в дошкольном детстве, постепенно заменяется учением и трудово ...