- Рассмотрим эти три типа уравнений:
1) ; 2)
; 3)
.
- Как же решать такие уравнения? Рассмотрим с вами примеры.
Пример 3. Решите уравнение: .
Решение: Разделим с Вами все части данного уравнения на число - 5 (не равное нулю) и получим равносильное уравнение: . Левую часть можем преобразовать по формуле сокращенного умножения – разности квадратов:
. Вспоминаем, что произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю. Получаем два линейных уравнения:
или
. Откуда находим:
,
.
Ответ: .
Пример 4. Решите уравнение: .
Решение: В предыдущем примере мы с вами применяли формулу сокращенного умножения. А в этом примере, на ваш взгляд, что мы должны выполнить? (Должны вынести общий множитель за скобки). Верно, в левой части уравнения выносим общий множитель за скобки и разложим ее на множители:
. Произведение множителей равно нулю, когда хотя бы один из них равен нулю. Получаем, как и в предыдущем примере, два линейных уравнения:
или
. Откуда:
.
Ответ: .
Пример 3. Решите уравнение: .
Решение: Мы с вами изучали решение уравнений вида: . Решением этого уравнения являются два числа:
Здесь у нас аналогичный вид, только число
. И в левой части при неизвестной стоит коэффициент -7. Мы можем разделить обе части данного уравнения на число -7 (не равное нулю). И получим:
. Откуда
. Или
. Следовательно, данное уравнение имеет единственный корень (или, говорят, два совпавших корня)
.
Ответ: 0.
На основе этого мы можем привести решение неполных квадратных уравнений в таблице:
Вид неполного квадратного уравнения. |
Корни уравнения. |
|
При |
При | |
|
|
|
|
Смотрите также::
Теорема Пифагора
Значение её состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Одна из теорем позволяет убедиться в том, что если из точки вне прямой проведены к ней перпендикуляр и наклонные, то: а) наклонные равны, если равны их проекции; б) та наклонная больше, которая имеет ...
Педагогический процесс как динамическая педагогическая система
Педагогический процесс - это специально организованное взаимодействие педагогов и воспитанников, направленное на решение развивающих и образовательных задач. Любой процесс есть последовательная смена одного состояния другим. В педагогическом процессе эта смена есть результат педагогического взаимод ...
Психологические особенности детей дошкольного возраста
Психологические особенности детей 3-го года жизни К концу третьего года жизни происходит существенный сдвиг в развитии игровой деятельности детей. Он заключается, прежде всего, в том, что у ребенка начинает появляться представление о роли, которую выполняет взрослый в реальном взаимодействии с друг ...