Рассмотрим примеры: 1). Укажем в нем коэффициенты
.
- Таким образом, исходя из общего вида уравнения: , находим
.
2) . )
.
Укажем в нем коэффициенты .
Таким образом, исходя из общего вида уравнения: , находим
.
На столах учащихся лежат следующее задание (данный материал раздается дежурным перед началом урока) :
Задание 1.
Укажите в уравнениях коэффициенты :
1) ; 2)
; 3)
;
4) ; 5)
; 6)
; 7)
.
Учащиеся выполняют задания и показывают учителю. Далее вызываются несколько учащихся для объяснения на доске.
После выполнения данного задания, учитель рассматривает на доске следующий пример:
Пример 2. Привести уравнение к стандартному виду:
.
- При приведении данного уравнения к стандартному виду, чем нам необходимо воспользоваться? (Формулами сокращенного умножения – квадрат суммы и разность квадратов).
Решение: Применяем формулы сокращенного умножения:
Квадрат суммы: ;
Разность квадратов: .
. Далее переносим все члены уравнения в левую часть:
и приводим подобные слагаемые:
.
Мы получили квадратное уравнение, коэффициенты которого равны: .
Ответ:
- Вернемся с Вами заданию № 1 на ваших карточках. Как вы думаете, что такое неполное квадратное уравнение? Например, если мы говорим о неполном стакане сока, значит, какая то часть его не заполнена (рис.). (Значит, неполное квадратное уравнение - это уравнение, в котором какой-то член отсутствует).
- Верно! Назовите мне такие уравнения в задании 1.
(5, 6, 7).
- В 1.5 какого члена уравнения нет? ().
- В 1.6 какой член уравнения отсутствует? ().
- А в 1.7 какой член отсутствует? ().
- Таким образом, существует три типа неполных квадратных уравнений. Для начала на основе определения квадратного уравнения сформируйте мне определение неполного квадратного уравнения. (Если в квадратном уравнении хотя бы один из коэффициентов
и
равен нулю, то такое уравнение называют неполным квадратным уравнением).
Смотрите также::
Понятие образовательной
системы, ее свойства
В научной литературе содержится множество формулировок понятия «система». При этом выделяется два основных подхода к ее формированию: 1) указание ее целостности в качестве существенного признака всякой системы; 2) понимание системы как множества элементов вместе с отношениями между ними. Под систем ...
Основные подходы к исследованию виктимности
Виктимность - характеризует предрасположенность человека стать жертвой неблагоприятных обстоятельств. Совокупность относительно устойчивых особенностей личности и поведения человека, определяющая его возможность превратиться в жертву преступления, в криминологии (учение о причинах и условиях соверш ...
Самостоятельная деятельность дошкольника в обучении:
анализ различных подходов. Структура самостоятельной деятельности ребенка
Любая наука ставит своей задачей не только описать и объяснить тот или ной круг явлений или предметов, но и в интересах человека управлять этими явлениями и предметами, и, если нужно, преобразовывать их. Управлять и тем более преобразовывать явления можно только тогда, когда они достаточно описаны ...