Математическое моделирование — частный случай моделирования. Является важнейшим видом знакового моделирования и осуществляется средствами языка математики. Знаковые образования и их элементы всегда рассматриваются вместе с определенными преобразованиями, операциями над ними, которые выполняет человек или машина (преобразования математических, логических, химических формул и т. п.).
Понятия «математическая модель» и «моделирование» широко используются в науке и на производстве. Роль знаковых моделей особенно возросла с расширением масштабов применения ЭВМ при построении знаковых моделей. Современная форма «материальной реализации» знакового (прежде всего, математического) моделирования - это моделирование на цифровых электронных вычислительных машинах, универсальных и специализированных.
Математическое моделирование предполагает использование в качестве специфического средства исследования оригинала его математическую модель, изучение которой дает новую информацию об объекте познания, его закономерностях (Н.П. Бусленко, Б. А. Глинский, Б.В. Гнеденко, Л.Д. Кудрявцев, И.Б. Новик, Г.И. Рузавин, К.А. Рыбников, В.А. Штофф). Предметом исследования при математическом моделировании является система «оригинал – математическая модель», где системообразующей связью выступает изоморфизм структур оригинала и модели. Структура служит инвариантным аспектом системы, раскрывающим механизм ее функционирования (Н.Ф. Овчинников).
Известно, что для математического исследования процессов и явлений, реально происходящих в действительности, надо суметь описать их на языке математики, то есть построить математическую модель процесса, явления. Математические модели и являются объектами непосредственного математического исследования.
Математической моделью называют описание какого-либо реального процесса или некоторой исследуемой ситуации на языке математических понятий, формул и отношений.
Математическая модель – это упрощенный вариант действительности, используемый для изучения ее ключевых свойств. Математическая модель, основанная на некотором упрощении, идеализации, не тождественна объекту, а является его приближенным отражением. Однако благодаря замене реального объекта соответствующей ему моделью появляется возможность сформулировать задачу его изучения как математическую и воспользоваться для анализа универсальным математическим аппаратом, который не зависит от конкретной природы объекта.
Математической моделью, с формальной точки зрения, можно назвать любую совокупность элементов и связывающих их операций. С содержательной точки зрения интересны модели, являющиеся изоморфным отображением реальных или реализуемых объектов, процессов и явлений.
С математическими моделями тесно связан математический метод познания отображаемых моделью объектов – метод математического моделирования.
Соотношение между элементами a, b и c, выражаемое формулой , - это математическая модель. Она изоморфно отображает операцию объединения двух «куч камней» с их числами a и b в общую «кучу камней», которых окажется . В этом смысле операция сложения изоморфна этому слиянию.
Этот пример поясняет общий математический метод познания. Он состоит в построении для объекта, процесса или явления изоморфной математической модели, изучении этой математической модели и переносе в силу изоморфизма результатов, полученных для модели, на исходный объект [10]. Другими словами, метод математического моделирования заключается в том, что для исследования какого-либо объекта выбирают или строят другой объект, в каком-то отношении подобный исследуемому. Построенный или выбранный объект изучают и с его помощью решают исследуемые задачи, а затем результаты решения этих задач переносят на первоначальное явление или объект.
Смотрите также::
Общая характеристика развития координации движений у старших дошкольников
В современных условиях значительно увеличился объем деятельности, осуществляемой в вероятностных и неожиданно возникающих ситуациях, которая требует проявления находчивости, быстроты реакции, способности к концентрации и переключению внимания, пространственной, временной, динамической точности движ ...
Принцип сознательности и активности
Результативность педагогического процесса во многом определяется тем, насколько сознательно и активно относятся к делу сами воспитываемые. Понимание существа заданий, как и активно заинтересованное выполнение их, ускоряет ход обучения, способствует результативности совершаемых действий, обуславлива ...
Методы развития творческого потенциала
Известны некоторые способности и навыки гениев: • Использование системного мышления. Одним из наиболее существенных паттернов гениальных людей является способность мыслить "системно", а не "механически". Ментальные стратегии обычно позволяют им отследить целые системы взаимодейс ...