Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Методические рекомендации к изучению темы «Прямоугольный треугольник»

Методические рекомендации к изучению темы «Прямоугольный треугольник»

Страница 5

Но цепь вопросов, связанных с зависимостью сторон прямоугольного треугольника, может быть продолжена.

Спросим прежде всего: «Справедлива ли теорема Пифагора для непрямоугольных треугольников?» – Очевидно, нет, так как две стороны треугольника a и b не определяют однозначно его форму, а третья сторона меняет свою длину в зависимости от значения угла между сторонами a и b так, что a – b < c< a + b (при b < a).

Следующая проблема: «Верна ли обратная теорема, обратная теореме Пифагора?»

Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный, а именно: прямым является угол, лежащий против этой большой стороны. В самом деле, если бы это было не так и треугольник, стороны которого a, b и c связаны зависимостью

c2 = a2 + b2, оказался бы не прямоугольным, то и стороны бы его не смогли бы удовлетворять этому равенству.

Весьма полезно попросить учащихся указать ряд случаев применения теоремы Пифагора.

В поиске ответа на этот вопрос могут появиться такие задачи.

Участок земли имеет форму прямоугольного треугольника. Наибольшая сторона участка выходит к реке и заболочено, пройти по ней нельзя. Как найти длину наибольшей стороны, если другие две стороны можно измерить непосредственно?

Длина часовой стрелки часов равна 6 мм, а минутной – 8 мм, сколько времени показывают часы, если расстояние между концами стрелок равно 20 мм, а минутная стрелка стоит на отметке «12»?

Можно провести экскурс учащихся в историю, но небольшой, что бы учащимся не надоело слушать.

Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до Пифагора. Возможно, что тогда ещё не знали её доказательства, а само соотношение между гипотенузой и катетом было установлено опытным путём на основе измерений. Пифагор, по-видимому нашёл доказательство этого соотношения. Сохранилось древние предание, что в честь своего открытия Пифагор принёс в жертву богам быка, по другим свидетельствам – даже 100 быков. На протяжении последних веков были найдены различные другие доказательства этой теоремы. В настоящее время их насчитывается боле ста.

Страницы: 1 2 3 4 5 


Смотрите также::

Характеристика основных речевых нарушений, встречающихся в младшем школьном возрасте
Все случаи речевых расстройств, когда ребёнок с нормальными умственными способностями и нормальным слухом страдает патологиями речевой организации (не может правильно организовывать звуковую и/или смысловую структуру своей речи), называются речевыми нарушениями. Как правило, ребёнок с речевыми нару ...

Семейное воспитание
Семью, как фактор воспитания, характеризует воспитательная среда, в которой организуется жизнь и деятельность ребёнка. Известно, что с момента рождения среда для ребёнка является условием и источником развития. Его взаимодействие со средой играет важную роль в психическом развитии и становлении лич ...

Отражение и преломление света
В учебнике Пурышевой явление отражения и преломления света показано на опыте с оптической шайбой. Это учит школьников хотя бы на бумаге уметь представить и понять эксперимент и сделать выводы по полученным экспериментальным данным. Те же самые рисунки этой установки изображены в учебниках Пинского ...

Разделы

Copyright © 2025 - All Rights Reserved - www.edumask.ru