Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Методические рекомендации к изучению темы «Прямоугольный треугольник»

Методические рекомендации к изучению темы «Прямоугольный треугольник»

Страница 5

Но цепь вопросов, связанных с зависимостью сторон прямоугольного треугольника, может быть продолжена.

Спросим прежде всего: «Справедлива ли теорема Пифагора для непрямоугольных треугольников?» – Очевидно, нет, так как две стороны треугольника a и b не определяют однозначно его форму, а третья сторона меняет свою длину в зависимости от значения угла между сторонами a и b так, что a – b < c< a + b (при b < a).

Следующая проблема: «Верна ли обратная теорема, обратная теореме Пифагора?»

Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный, а именно: прямым является угол, лежащий против этой большой стороны. В самом деле, если бы это было не так и треугольник, стороны которого a, b и c связаны зависимостью

c2 = a2 + b2, оказался бы не прямоугольным, то и стороны бы его не смогли бы удовлетворять этому равенству.

Весьма полезно попросить учащихся указать ряд случаев применения теоремы Пифагора.

В поиске ответа на этот вопрос могут появиться такие задачи.

Участок земли имеет форму прямоугольного треугольника. Наибольшая сторона участка выходит к реке и заболочено, пройти по ней нельзя. Как найти длину наибольшей стороны, если другие две стороны можно измерить непосредственно?

Длина часовой стрелки часов равна 6 мм, а минутной – 8 мм, сколько времени показывают часы, если расстояние между концами стрелок равно 20 мм, а минутная стрелка стоит на отметке «12»?

Можно провести экскурс учащихся в историю, но небольшой, что бы учащимся не надоело слушать.

Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до Пифагора. Возможно, что тогда ещё не знали её доказательства, а само соотношение между гипотенузой и катетом было установлено опытным путём на основе измерений. Пифагор, по-видимому нашёл доказательство этого соотношения. Сохранилось древние предание, что в честь своего открытия Пифагор принёс в жертву богам быка, по другим свидетельствам – даже 100 быков. На протяжении последних веков были найдены различные другие доказательства этой теоремы. В настоящее время их насчитывается боле ста.

Страницы: 1 2 3 4 5 


Смотрите также::

Использование методики развития мелкой моторики на формирующем этапе эксперимента
Результаты констатирующего эксперимента определили задачи, содержание и цель формирующего эксперимента, основной целью которого была проверка организационно-педагогической модели и педагогических условий эффективного развития мелкой моторики младших школьников в условиях дополнительной системы обра ...

Критерии эффективности общения преподавателя и учащихся
Проблемы эффективности педагогического общения занимают достаточно существенное место в современных психолого-педагогических исследованиях. В нашей работе, мы, для начала, попытаемся ответить на вопрос: почему учителя общаются с детьми по-разному, почему у них складываются и с каждым отдельным учен ...

Последовательность развития чувства коллективизма у школьников
С точки зрения психологии существует пять основных периодов развития чувства коллективизма. Хотя они и схожи с этапами развития коллектива, существуют и определенные различия. Итак, первая ступень развития чувства коллективизма – «песчаная россыпь», то есть это стадия, на которой незнакомые или мал ...

Разделы

Copyright © 2025 - All Rights Reserved - www.edumask.ru