Но цепь вопросов, связанных с зависимостью сторон прямоугольного треугольника, может быть продолжена.
Спросим прежде всего: «Справедлива ли теорема Пифагора для непрямоугольных треугольников?» – Очевидно, нет, так как две стороны треугольника a и b не определяют однозначно его форму, а третья сторона меняет свою длину в зависимости от значения угла между сторонами a и b так, что a – b < c< a + b (при b < a).
Следующая проблема: «Верна ли обратная теорема, обратная теореме Пифагора?»
Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный, а именно: прямым является угол, лежащий против этой большой стороны. В самом деле, если бы это было не так и треугольник, стороны которого a, b и c связаны зависимостью
c2 = a2 + b2, оказался бы не прямоугольным, то и стороны бы его не смогли бы удовлетворять этому равенству.
Весьма полезно попросить учащихся указать ряд случаев применения теоремы Пифагора.
В поиске ответа на этот вопрос могут появиться такие задачи.
Участок земли имеет форму прямоугольного треугольника. Наибольшая сторона участка выходит к реке и заболочено, пройти по ней нельзя. Как найти длину наибольшей стороны, если другие две стороны можно измерить непосредственно?
Длина часовой стрелки часов равна 6 мм, а минутной – 8 мм, сколько времени показывают часы, если расстояние между концами стрелок равно 20 мм, а минутная стрелка стоит на отметке «12»?
Можно провести экскурс учащихся в историю, но небольшой, что бы учащимся не надоело слушать.
Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до Пифагора. Возможно, что тогда ещё не знали её доказательства, а само соотношение между гипотенузой и катетом было установлено опытным путём на основе измерений. Пифагор, по-видимому нашёл доказательство этого соотношения. Сохранилось древние предание, что в честь своего открытия Пифагор принёс в жертву богам быка, по другим свидетельствам – даже 100 быков. На протяжении последних веков были найдены различные другие доказательства этой теоремы. В настоящее время их насчитывается боле ста.
Смотрите также::
Методика использования подвижных игр в детском саду
Методика проведения подвижной игры включает неограниченные возможности комплексного использования разнообразных предметов, направленных на формирование личности ребенка, умелое педагогическое руководство ею. Опыт Н.Н. Кальпио, Н.Г. Кожевниковой, В.И. Васюковой и др. показал влияние игрового сюжета ...
Опытно-экспериментальные исследования
возможностей развития детей на уроках ИЗО
С опорой на теоретические положения исследуемого вопроса была разработана следующая концепция по развитию творческих способностей младших школьников на уроках ИЗО, которая представлена в практической части дипломной работы. Практическая часть дипломной работы была осуществлена в средней школе №10 с ...
Исследование просодической стороны речи у детей со
стертой дизартрией
Обследование чувства ритма необходимо, т. к. именно восприятие и воспроизведение ритма подготавливают к восприятию интонационной выразительности, способствуют её развитию, созданию предпосылки для усвоения логического ударения, правильного чтения фразы. Цель: определить, умеет ли ребёнок определять ...