Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Методические рекомендации к изучению темы «Прямоугольный треугольник»

Методические рекомендации к изучению темы «Прямоугольный треугольник»

Страница 5

Но цепь вопросов, связанных с зависимостью сторон прямоугольного треугольника, может быть продолжена.

Спросим прежде всего: «Справедлива ли теорема Пифагора для непрямоугольных треугольников?» – Очевидно, нет, так как две стороны треугольника a и b не определяют однозначно его форму, а третья сторона меняет свою длину в зависимости от значения угла между сторонами a и b так, что a – b < c< a + b (при b < a).

Следующая проблема: «Верна ли обратная теорема, обратная теореме Пифагора?»

Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный, а именно: прямым является угол, лежащий против этой большой стороны. В самом деле, если бы это было не так и треугольник, стороны которого a, b и c связаны зависимостью

c2 = a2 + b2, оказался бы не прямоугольным, то и стороны бы его не смогли бы удовлетворять этому равенству.

Весьма полезно попросить учащихся указать ряд случаев применения теоремы Пифагора.

В поиске ответа на этот вопрос могут появиться такие задачи.

Участок земли имеет форму прямоугольного треугольника. Наибольшая сторона участка выходит к реке и заболочено, пройти по ней нельзя. Как найти длину наибольшей стороны, если другие две стороны можно измерить непосредственно?

Длина часовой стрелки часов равна 6 мм, а минутной – 8 мм, сколько времени показывают часы, если расстояние между концами стрелок равно 20 мм, а минутная стрелка стоит на отметке «12»?

Можно провести экскурс учащихся в историю, но небольшой, что бы учащимся не надоело слушать.

Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до Пифагора. Возможно, что тогда ещё не знали её доказательства, а само соотношение между гипотенузой и катетом было установлено опытным путём на основе измерений. Пифагор, по-видимому нашёл доказательство этого соотношения. Сохранилось древние предание, что в честь своего открытия Пифагор принёс в жертву богам быка, по другим свидетельствам – даже 100 быков. На протяжении последних веков были найдены различные другие доказательства этой теоремы. В настоящее время их насчитывается боле ста.

Страницы: 1 2 3 4 5 


Смотрите также::

Опыт деятельности образовательных учреждений по профессиональной ориентация школьников
В мае 2007 года было проведено анкетирование учеников 9 – 11 классов общеобразовательных школ города Красноярска. Целью данного исследования является выявление проблем профессиональной ориентации данной категории. В качестве выборки использовалась вероятностная выборка. В анкетировании приняло учас ...

Работа над правильной постановкой логических ударений
Большое значение для выразительного чтения имеет правильность, точность логических упражнений. Для того, чтобы предложение приобрело определенный смысл, необходимо силой голоса выделять важное по значению слово в ряду остальных Смысл изменяется в зависимости от того, где поставлено логическое ударе ...

Личностная рефлексия как одно из новообразований в младшем школьном периоде
Два других важных новообразования младшего школьного периода – это личностная рефлексия и рефлексия интеллектуальная. Рефлексия (от лат "reflexio" – "обращение назад") – это процесс самопознания субьектом внутренних психических актов и состояний. Понятие рефлексии первоначально ...

Разделы

Copyright © 2025 - All Rights Reserved - www.edumask.ru