Проблемы, которые учитель может ставить перед учениками, обычно разрешаются на протяжении одного или нескольких уроков.
Наиболее часто учителя создают проблемные ситуации при помощи эксперимента, то есть исследования частного случая.
Легко организовать проблемную ситуацию, предложив ученикам задачи, для решения которых нужны новые знания. Полезно при этом поддерживать накал активности цепью проблемных вопросов, сменяющих один другой.
Перед изучением теоремы Пифагора рассматривается практическая задача, для решения которой нужно уметь вычислить длину гипотенузы по длинам катетов.
Построение убеждает, что определенная зависимость между катетами и гипотенузой существует, что два катета определяют треугольник, в котором гипотенуза не может быть произвольной. Можно найти приблизительное решение графическим путем. Теперь возникает вопрос: «Можно ли выразить формулой зависимость между катетами и гипотенузой?». В поисках ответа рассмотрим удобный частный случай: прямоугольный треугольник с острыми углами по 45º.
Получаем для него формулу
c2 = a2 + b2 и задаёмся вопросом: «Верна ли эта формула для произвольного прямоугольного треугольника?».
Дальнейшее исследование может быть построено по такой схеме. Поскольку в предлагаемую формулу входят величины a2, b2, c2, то есть площади квадратов со сторонами a, b, c. Построим эти квадраты. Первое построение («пифагоровы штаны») идею доказательства не поясняет.
Тогда учитель предлагает связать величины a, b и c в комбинации прямоугольных треугольников и квадратов таким образом, каким показано на рисунке.
Рассмотрим данный рисунок. Понятно, что с одной стороны площадь большого квадрата равна произведению двух сторон, которые выражены как (a+b). Отсюда следует, что площадь равна (a+b)2.
С другой стороны площадь большого квадрата равна сумме площадей фигур, на которые разбит данный квадрат. В данном случае, это сумма малого квадрата со стороной c и четырёх равных треугольников со сторонами a, b и c.
Отсюда следует, что площадь малого квадрата равна разности площади большого квадрата со стороной (a+b) и учетверённой площади треугольника со сторонами a, b и c, то есть
c2 = (a + b)2 – ![]()
c2 = a2 + 2ab + b2 –
2c2 = 2a2 + 4ab + 2b2 – 4ab
2c2 = 2a2 + 2b2
c2 = a2 + b2
Можно ли считать формулу доказанной? Если исходить из такой формулы, которая дана на чертеже, то да. Рассмотрим, всегда ли можно для любого прямоугольного треугольника провести такое построение. Строим квадрат со стороной (a + b) и строим прямоугольный треугольник с катетами a и b. Выясним, почему все такие треугольники равны. Остаётся показать, что фигура, образованная гипотенузой и полученных прямоугольных треугольников, является квадратом. Замечаем, что все стороны этой фигуры равны как гипотенузы равных треугольников. Но достаточно ли этого, чтобы фигура ABCD была квадратом? – Нет. Доказываем, что все углы этой фигуры прямые, так как они равны разности развёрнутого угла и острых углов данного прямоугольного треугольника. Следовательно, теорему Пифагора можно считать доказанной.
В качестве домашнего задания учитель может поручить ознакомиться с доказательством, данным в учебнике.
Смотрите также::
Воспитательный потенциал семьи как важный фактор успешного развития ребёнка
Семейное воспитание не всегда бывает «качественным», так как одни родители не умеют способствовать развитию своих детей, другие не хотят делать этого, а третьи не могут развивать ребёнка в силу каких-либо жизненных обстоятельств (потеря работы и средств к существованию, тяжёлые заболевания, амораль ...
Воспитание, процесс воспитания
Воспитание – это процесс систематического и целенаправленного воздействия на человека, на его духовное и физическое развитие в целях подготовки его к производственной, общественной и культурной деятельности. Но воспитание не отдельный процесс, он неразрывно связан с обучением и образованием, поскол ...
Формирование самостоятельной деятельности учащихся
Формирование самостоятельной деятельности учащихся проходит несколько уровней. Следовательно, описание предложенной выше модели надо вести на каждом конкретном уровне отдельно. В педагогической литературе выделяются четыре уровня самостоятельной деятельности учащихся: 1. Копирующие действия учащихс ...