Утверждения об углах прямоугольного треугольника, являясь прямыми следствиями из теоремы о сумме углов треугольника, чрезвычайно просто доказываются. Их доказательства можно предложить провести учащимся самостоятельно.
Один из углов прямоугольного треугольника равен: а) 20º; б) 30º; в) 45º. Найти второй острый угол треугольника.
Определите острые углы прямоугольного треугольника, если один из них в 2 раза больше другого.
Далее рассмотреть свойства прямоугольного треугольника. Изучение пункта 34 о свойствах прямоугольного треугольника» можно начать с решения задачи 254 и 255. После этого рассмотреть свойство 1, которому следует уделить особое внимание (катет прямоугольного треугольника, лежащего против угла в 30º, в два раза меньше гипотенузы). Так как учащиеся будут использовать его при решении задач, а в дальнейшем – при получении значений тригонометрических функций углов 30° и 60°. Использование этого свойства можно показать на примере задачи 265. Доказательство свойств 2 и 3 следует провести учителю самому с записью условия и заключения прямого и обратного утверждений на доске в виде таблицы. Эту таблицу учащиеся должны воспроизвести в своих тетрадях.
Теорема |
Обратная теорема | |
Дано |
Δ ABC, < A = 90º, < B = 30º |
Δ ABC, < A = 90, AC=BC |
Доказать |
AC=BC |
< B = 30º |
Затем рекомендуется решить задачи 257, 259, 260.
Перед доказательством специальных признаков равенства треугольников полезно вспомнить общие признаки, но не отвлечённо, применительно к прямоугольным треугольникам. Это можно сделать, предложив, например, устно по готовому рисунку провести доказательства:
1. Докажите, что если два катета одного прямоугольного треугольника соответственно равны двум катетам другого, то такие треугольники равны.
2. Докажите, что два прямоугольных треугольника ABC и A1B1C1 с прямым углом C и C1 равны, если у них равны катеты BC B1C1 и прилежащие к ним острые углы: <B и <B1.
После выполнения задачи 2 можно сделать замечание о том, что если в прямоугольных треугольниках ABC и A1B1C1 <A = <A1, то и <B = <B1, так как углы B B1 дополняют до 90º равные углы A и A1. А значит, можно доказать равенство этих треугольников по катету и противолежащему острому углу.
Следует также сказать, что этот признак и ещё два признака, которые могут рассматриваться далее, являются специальными признаками прямоугольных треугольников.
Доказательство этого признака можно предложить учащимся провесит самостоятельно.
Сформулировать признак равенства прямоугольных треугольников по гипотенузе и острому углу, учитель может и его предложить учащимся доказать самостоятельно.
Закрепить доказанные признаки можно а ходе выполнения заданий.
Обоснуйте равенство треугольников на рисунке а).
2. На рисунке б) <B = <D = 90º, BC║AD. Докажите, что ΔABC = ΔCDA.
Или решить задачи 261,263 из учебника.
Смотрите также::
Тренажер, включающий модель, основанную на уравнениях баланса
с коэффициентами, полученными из экспериментальных данных
Существенным шагом вперед в сфере построения моделей энергоблоков стало признание того факта, что модели должны напрямую строиться на основе физических законов, которыми определяется функционирование реального объекта. Прежде всего, это законы сохранения энергии (тепла), массы и количества движения ...
Методы развития творческих способностей у детей
Есть великая формула «дедушки» космонавтики К.Э. Циолковского, приоткрывающая завесу над тайной рождения творческого ума: «Сначала я открывал истины, известные многим, затем стал открывать истины, известные некоторым, и, наконец, стал открывать истины, никому еще не известные». Видимо, это и есть п ...
Углы в прямоугольном треугольнике
Синус, косинус и тангенс острого угла в прямоугольном треугольнике Рассмотрим прямоугольный треугольник ABC с прямым углом C (рис. 10). Катет BC этого треугольника является противоположным углу A, а катет AC – прилежащим к этому углу. Косинусом острого угла прямоугольного треугольника называется от ...