30°, 45° И 60°
Найдём сначала значение синуса, косинуса и тангенса для углов 30° и 60°. Для этого рассмотрим прямоугольный треугольник ABC с прямым углом C, у которого < A =30°, <B = 60° (рис. 13).
Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то
. Но
. С другой стороны
. Итак,
.
Из основного тригонометрического тождества получаем
,
.
По формуле (4) П. 5.1. находим
.
Найдём теперь sin45°, cos45° и tg45°. Для этого рассмотрим равнобедренный прямоугольный треугольник ABC с прямым углом C (рис. 14).
В этом треугольнике AC = BC, < A = < B = 45°. По теореме Пифагора
AB2 = AC2 + BC2 = 2AC2 = 2BC2, откуда AC = BC =
. Следовательно,
.
Составим таблицу значений sinα, cosα, tgα для углов α, равных 30°, 45°, 60°.
|
α |
30° |
45° |
60° |
|
sinα |
|
|
|
|
cosα |
|
|
|
|
tgα |
|
1 |
|
урок геометрия треугольник теорема
Смотрите также::
Особенности диалогической речи детей в процессе общения со сверстниками и
взрослыми
Цель: - определить условия создания благоприятного климата для развития диалогической речи у детей дошкольного возраста; - выявить исходный уровень развития диалогической речи у дошкольников; Констатирующий этап эксперимента проводился в течение месяца. В нем принимало участие 20 детей среднего дош ...
Особенности просодической стороны речи у детей дошкольного
возраста при патологии
Формирование правильной речи является важным звеном в системе педагогической абилитации детей с нарушением речи. В связи с этим, становится актуальной проблема реабилитации и адаптации таких детей в современном обществе. Сформированность коммуникативной деятельности дошкольников с указанной патолог ...
Виды наглядности
Естественная наглядность предполагает ознакомление учащихся с реальными объектами (с растениями, животными, минералами и т.п.) в классе и за пределами школы (во время экскурсий, выездов в природу и т.п.). 2. Экспериментальная наглядность является разновидностью естественной наглядности. Она предпол ...