30°, 45° И 60°
Найдём сначала значение синуса, косинуса и тангенса для углов 30° и 60°. Для этого рассмотрим прямоугольный треугольник ABC с прямым углом C, у которого < A =30°, <B = 60° (рис. 13).
Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то
. Но
. С другой стороны
. Итак,
.
Из основного тригонометрического тождества получаем
,
.
По формуле (4) П. 5.1. находим
.
Найдём теперь sin45°, cos45° и tg45°. Для этого рассмотрим равнобедренный прямоугольный треугольник ABC с прямым углом C (рис. 14).
В этом треугольнике AC = BC, < A = < B = 45°. По теореме Пифагора
AB2 = AC2 + BC2 = 2AC2 = 2BC2, откуда AC = BC =
. Следовательно,
.
Составим таблицу значений sinα, cosα, tgα для углов α, равных 30°, 45°, 60°.
|
α |
30° |
45° |
60° |
|
sinα |
|
|
|
|
cosα |
|
|
|
|
tgα |
|
1 |
|
урок геометрия треугольник теорема
Смотрите также::
Восстановление систематического курса истории 1930-е - 1950-е гг
Недостатки исторического образования 1920-х годов стали остро ощущаться, когда социалистическое строительство потребовало воспроизводства многочисленных кадров образованных людей. Новации 1920-х гг.( акцент на трудовую деятельность учащихся школ, политехнический компонент, исследовательский, опытно ...
Структура игры
Структура представляет собой вступительную заставку, после которой осуществляется переход в основную локацию с панорамой города, откуда есть выходы на несколько локаций, каждая из которых содержит игру. После успешного прохождения задания – возврат в основную локацию. В завершение всей игры – финал ...
Роль изучения элементов математического моделирования в
курсе математики 5-6 классов
В литературных источниках отмечается использование моделирования в обучении математике как средства познания и осмысления нового знания, выделяются его виды, отмечаются условия, необходимые для его формирования (Л. М. Фридман, В. В. Давыдов, С. И. Архангельский, О. Б. Епишева, В. И. Крупич, Л. С. ...