30°, 45° И 60°
Найдём сначала значение синуса, косинуса и тангенса для углов 30° и 60°. Для этого рассмотрим прямоугольный треугольник ABC с прямым углом C, у которого < A =30°, <B = 60° (рис. 13).
Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то . Но
. С другой стороны
. Итак,
.
Из основного тригонометрического тождества получаем
,
.
По формуле (4) П. 5.1. находим
.
Найдём теперь sin45°, cos45° и tg45°. Для этого рассмотрим равнобедренный прямоугольный треугольник ABC с прямым углом C (рис. 14).
В этом треугольнике AC = BC, < A = < B = 45°. По теореме Пифагора
AB2 = AC2 + BC2 = 2AC2 = 2BC2, откуда AC = BC =. Следовательно,
.
Составим таблицу значений sinα, cosα, tgα для углов α, равных 30°, 45°, 60°.
α |
30° |
45° |
60° |
sinα |
|
|
|
cosα |
|
|
|
tgα |
|
1 |
|
урок геометрия треугольник теорема
Смотрите также::
Понятийно-категориальный аппарат проблемы эффективности воспитательного
процесса в учреждениях начального профессионального образования
Отправной точкой теоретического анализа данной проблемы мы избрали построение ее понятийно-категориального аппарата, включившего основные и рядополагающие компоненты, такие, как «профессиональное образование», «учреждение начального профессионального образования», «воспитание», «профессиональное ...
Современное дошкольное образование
Не будет преувеличением сказать, что на сегодня ступень дошкольного детства рассматривается как один из главных образовательных резервов. В современном научно-психологическом понимании детство выступает как закономерная последовательность целостных внутренне необходимых этапов развития личности. В ...
Выявление уровня развития творческих способностей детей в музыкальной
деятельности
Практическое изучение создания условий для развития музыкальных творческих способностей детей в семье проводилось на базе МДОУ «Детский сад компенсирующего вида № 1» г.Череповца. Изучались дети и их семьи в старшей группе № 4. Первоначально нам было необходимо определить уровень развития творческих ...