Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Углы в прямоугольном треугольнике

Углы в прямоугольном треугольнике

Страница 1

Синус, косинус и тангенс острого угла в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник ABC с прямым углом C (рис. 10). Катет BC этого треугольника является противоположным углу A,

а катет AC – прилежащим к этому углу.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Синус, косинус и тангенс угла равного α обозначается символами sin α, cos α и tg α (читается: «синус альфа», «косинус альфа» и «тангенс альфа»). На рисунке

, (1)

, (2)

, (3)

Из формул (1) и (2) получаем:

Сравнивая с формулой (3), находим

(4),

то есть тангенс угла равен отношению синуса к косинусу этого угла.

Теорема. Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

Доказательство. Пусть ABC и A1B1C1 – два прямоугольных треугольника с прямыми углами C и C1 и с одним и тем же углом при вершине A и A1 равны α (рис. 11).

Треугольники ABC и A1B1C1 подобны по первому признаку подобия треугольников, поэтому . Из этих равенств следует, что , то есть .

Аналогично , то есть , и , то есть .

Что и требовалось доказать.

Докажем теперь справедливость равенства

(5).

Из формул (1) и (2) получаем . По теореме Пифагора , поэтому .

Равенство (5) называется основным тригонометрическим тождеством.

Представим ещё одно доказательство теоремы Пифагора, основанное на определении косинуса угла в прямоугольном треугольнике.

Доказательство. Пусть ABC – данный прямоугольный треугольник с прямым углом C. Проведём высоту CD из вершины прямого угла C. (рис. 12).

По определению косинуса угла . Отсюда . Аналогично . Отсюда .

Складывая полученные равенства почленно, и, замечая, что AD+DB=AB, получим .

Что и требовалось доказать.

Значение синуса, косинуса и тангенса для углов

Страницы: 1 2


Смотрите также::

Использование методики развития мелкой моторики на формирующем этапе эксперимента
Результаты констатирующего эксперимента определили задачи, содержание и цель формирующего эксперимента, основной целью которого была проверка организационно-педагогической модели и педагогических условий эффективного развития мелкой моторики младших школьников в условиях дополнительной системы обра ...

Методика диагностики моторики рук
Исследования развития кинестетической основы движений руки. Инструкция: 1. «Опусти кисть правой руки вниз. Все пальцы, кроме большого, сжать, большой палец вытянуть влево». 2. «Сжать кисти обеих рук в кулаки, вытянув при этом большие пальцы вверх». 3. «Кисть правой (левой) руки сжать в кулак, на не ...

Совершенствование содержания образования в специальной школе
Реформа общеобразовательной и профессиональной школы (1984) вызвала необходимость в совершенствовании структуры вспомогательной школы и содержания образования в ней. Обязательное обучение во вспомогательной школе завершает­ся IX классом. I—IV классы должны были обеспечить формирова­ние и развитие п ...

Разделы

Copyright © 2024 - All Rights Reserved - www.edumask.ru