Новое в педагогике » Методика изучения элементов математического моделирования в курсе математики 5-6 классов » Анализ учебников Г. В. Дорофеева, Л. Г. Петерсон «Математика-5», «Математика-6» с точки зрения наличия задач для формирования умений, характерных для математического моделирования

Анализ учебников Г. В. Дорофеева, Л. Г. Петерсон «Математика-5», «Математика-6» с точки зрения наличия задач для формирования умений, характерных для математического моделирования

Страница 1

Известно, что процесс мате­матического моделирования осуществляется в три этапа:

1) формали­зация;

2) решение внутри модели;

3) интерпрета­ция.

Следует отметить, что в школе больше внимания уделяется работе над вторым этапом моделирования, в то время как форма­лизация и интерпретация остаются недостаточно раскрытыми. Необходимо организовать обучение уча­щихся элементам моделирования, относящимся ко всем трем эта­пам. Важным средством обучения элементам моде­лирования, относящимся к этапам формализации и интерпретации, являются сюжетные задачи, но этап формализации при решении школьных сюжетных задач оказывается представлен слишком узко. Учащимся, как правило, сразу предъяв­ляется словесная модель задачи, поэтому представления о характе­ре отражения математикой явлений, описываемых в задачах, часто оказываются весьма примитивными, то есть нет условий для содержательного раскрытия деятельности, проходящей на этом этапе математического моделирования. Поэтому надо искать пути содержательного раскрытия и конкретизации этапов форма­лизации и интерпретации математического моделирования. Уже в 5 – 6 классах целесообразно использовать задачи, которые позволяют учить школьников действиям, характерным для этапов формализации и интерпретации.

Моделирование включает в себя большое число составных элементов, поэтому большую роль в успешности работы по математическому моделированию играет выявление элементов математического моделирования. В. А. Стукалов выявляет следующие элементы:

замена исходных терминов выбранными математическими эквивалентами;

оценка полноты исходной информации и введению при необходимости недостающих числовых данных;

выбор точности числовых значений, соответствующей смыслу задачи;

оценка возможности получения числовых данных для решения задачи на практике.

На основе перечисленных элементов математического моделирования, характерных для этапов формализации и интерпретации, можно выделить умения, которыми должны овладеть учащиеся для успешного освоения методом математического моделирования:

умение заменять исходные термины математическими эквивалентами;

умение оценивать полноту исходной информации;

умение выбирать точность числовых значений;

умение оценивать возможность получения числовых данных для решения задачи.

Проанализируем учебники Г. В. Дорофеева, Л. Г. Петерсон с точки зрения наличия задач, применяемых для формирования у учащихся 5 – 6 классов выделенных умений.

Выполнение действия замены исходных терминов выбранными математическими эквивалентами основывается прежде всего на жизненном опыте учащихся, то есть знании терминов, встречающихся в быту или при изучении других предметов, которые могут быть заменены математическими понятиями и отношениями. Из этого следует, что в системе задач школьных учебников должно быть больше задач, содержащих термины из различных научных областей, но не требующих длительного и громоздкого объяснения их сущности. Кроме этого, задачи расширяют словарный запас учащихся, знакомят с новыми интересными фактами из разных наук, вооружают учащихся навыками самостоятельной работы, способствуют сознательному применению имеющихся знаний к жизни, знакомят их с новыми приемами решения, развивают математическое мышление и практическую смекалку.

Обучение замене исходных терминов может происходить при формировании понятий. В анализируемых учебниках такими математическими эквивалентами являются понятия «прямоугольник», в частности, «квадрат», «прямоугольный параллелепипед» (в частном случае «куб»), «окружность», «сфера». В заданиях, предложенных авторами учебника, всегда наряду с исходным термином указывается его математический эквивалент, что по нашему мнению является целесообразным. В тексте учебника встречаются следующие задачи.

Понятие «прямоугольник»

Площадь баскетбольной площадки прямоугольной формы а м2, а длина 20 м. Какова ее ширина?

На рисунке показан план земельного участка и указаны его размеры. Найди площадь этого участка, и выразили ее в арах. Какова длина прямоугольника, имеющего такую же площадь и ширину 45 м?

Страницы: 1 2 3 4 5 6


Смотрите также::

Формирование пространственных представлений в онтогенезе
Многие авторы, занимающиеся, проблемой изучения пространственных представлений относят их к базису, над которым надстраивается вся совокупность высших психических процессов – письмо, счет, чтение и т.д. Основой для исследования базовых составляющих психического развития являются работы А.В.Семенови ...

Формирующий этап: разработка цикла занятий, направленных на развитие воображения младших школьников на уроках ИЗО
Вторым этапом экспериментальной работы является разработка цикла занятий на развитие воображения младших школьников. Материал представляет собой последовательность тщательно подобранных, постепенно усложняющихся элементов, базируется уже на изученном, содержит знакомые формы и выполняется уже извес ...

Авторы, которые занимались изучением этой проблемы
Воспитание не является делом только педагогов и общества, воспитание и обучение детей - это дело каждой семьи, что доказывают научные труды В.М. Бехтерева, П.П. Болонского, М.И. Демкова, П.Ф. Каптерева, П.Ф. Лесгафта, М.С. Лунина, А.Н. Острогорского, А.Н. Радищева, Л.Н. Толстого, С.П. Шевырева и др ...

Разделы

Copyright © 2024 - All Rights Reserved - www.edumask.ru