Традиционно в качестве основ обучения принимали соответствующие математические теории в завершенном виде. Однако завершенная, дедуктивно построенная математическая теория не может служить теоретической основой начального обучения математике. Игнорирование этого факта может привести к недооценке особенностей психологии детей 6-9 лет.
Термин "математика" в узком смысле обозначает уже построенные математические теории. Математика в широком смысле охватывает и ту стадию развития математического знания, которая предшествует построенной математической теории. Эту стадию развития математики называют "предматематикой". Такое название она получила недавно (около 20 лет назад). Содержанием предматематики является теория, раскрывающая связь между свойствами реальных объектов, отношений и математическими понятиями.
Дедуктивно построенная математическая теория состоит из исходных (неопределяемых) понятий, исходных, принимаемых за истинные без доказательства предложений (аксиом), определяемых понятий и определений, доказываемых предложений (теорем) и доказательств, а также логических правил вывода. Предматематика также состоит из понятий, предложений (истинных высказываний об этих понятиях) и доказательств. Однако они существенно отличаются от математических.
Предматематические понятия не разделяются, как в строго построенной математической теории, на исходные и определяемые. На предматематическом уровне прообразом понятий являются непосредственно реальные объекты, ситуации. Существенное отличие предматематики от математики состоит в том, что в ней применяются лишь одноступенчатая абстракция, в математики же – многоступенчатая.
Особенность предматематических доказательств состоит в том, что заключение об истинности может основываться на частных случаях (с математической точки зрения это неприемлемо). Изложение дедуктивной математической теории носит формальный характер, изложение предматематики – содержательный. Дедукция – наиболее важная черта математики – в пердматематики играет лишь второстепенную роль, носит сугубо локальный характер. В начальном обучении математике встречаются лишь отдельные "дедуктивные островки".
Проиллюстрируем сказанное на простом примере. Рассмотрим одно и то же рассуждение с математической и предматематической точек зрения.
Приведем сначала строгое математическое доказательство равенства 5+8=13:
На предматематическом уровне оно может выглядеть так:
5+8=5+5+3=10+3=13
Различие между приведенными доказательствами состоит не только в том, что в последнем нет скобок. Даже если бы здесь использовались скобки, это не означало бы применения некоторого закона. То, что в математике формулируется в виде закона, в данном случае закона ассоциативности сложения, на предматематическом уровне считается интуитивно истинным. Это свойство, обоснованное с помощью интуиции, выделяется в дальнейшем обучении в соответствующий закон.
Предматематика – это не "детская математика". На предматематическом уровне изучаются некоторые понятия и темы школьного курса математики и в средних, и в старших классах. Этот уровень часто является достаточным и для научно – популярной литературы. Что же касается обучения математике в начальных классах школы, то оно осуществляется исключительно на предматематическом уровне. Поэтому правомерно говорить о том, что в начальной школе учащиеся получают "предматематическую" подготовку. Она позволяет им в последующих классах перейти к изучению систематических курсов алгебры, геометрии и начала анализа.
Смотрите также::
Российское законодательство в области развития физической
культуры и спорта
В России пока еще отсутствует целостная общенациональная политика по формированию здорового образа жизни нации, этот вывод транслируют сами законодатели. В официальном Обращении Совета Федерации ФС РФ к органам государственной власти (2006 г.) особо подчеркивается, что в стране сложилась острая сит ...
Методические основы изучения темы «Прямоугольный треугольник»
Методика обучения математике не только логически организует отобранный материал, но и ориентирует его на особенности учащихся того или иного класса, используя закономерности памяти, мышления, внимания и т.д., индивидуальные способности возрастной группы. Основная роль учителя математики в современн ...
Анализ современных учебно-методических комплектов
по английскому языку на предмет контроля речевой деятельности
В практической части данной работы мы осуществим анализ тех учебно-методических комплектов, которые вошли в Федеральный перечень учебников по иностранному языку, рекомендованы и допущены Министерством Образования и Науки Российской Федерации к использованию в общеобразовательных учреждениях в 2010/ ...