Учебники Ю.Н. Макарычева и др.
«Алгебра 7»
класс. В теоретическом материале практически отсутствуют исторические факты. Только как сноски на некоторых страницах упоминается по два – три предложения о математиках и их работы: Аль-Хорезми, Г.В. Лейбниц, С.А. Лебедев, Евклид, П. Ферма, Р. Декарт. Но в конце учебника приводятся «Исторические сведения», которые распределены на пункты: «Когда появилась алгебра», «О функциях», «Формулы сокращенного умножения», «О методе координат», «Вычислительные средства». https://технобытсервис.рф ремонт промышленной электроники на компонентном уровне.
«Алгебра 8»
класс. Так же как и в учебнике 7 класса приводятся сноски о математиках и их работы: И. Ньютоне, Карле Вейерштрассе, Франсуа Виете, Архимеде, А.Н. Крылове. В конце учебника есть глава, которая называется «Исторические сведения». В ней рассказывается история о дробях, действительных числах, квадратных корнях, квадратных уравнениях, неравенствах, приближенных вычислениях.
Такая же стилистика и в учебнике «Алгебра 9»
класса. В ней приводятся исторические сведения о таких ученых как Н.И. Лобачевский, П. Дирихле, Н. Абель, Эварист Галуа, К. Гаусс, Диофант, К. Птолемей и Л. Эйлер.
В главе «Исторические сведения» написано о функциях, об уравнениях высших степеней, о прогрессиях, комплексных числах, степенях и тригонометрии.
Учебники Н. Я. Виленкина и др.
Алгебра 8
класс. В этом учебнике есть пункт, который называется «Теорема Безу», но здесь рассматривается деление многочлена на двучлен и в конце доказательства говорится, что «мы доказали следующее утверждение, принадлежащее французскому математику Э. Безу (1730-1783)».
В главе III «Делимость чисел» упоминается об итальянском математике Дж. Пиано и выделяются свойства отношения, которые он сформулировал.
В пункте 8 этой главы упоминается о петербургском академике Христиане Гольдбахе и его предложении о четных числах, об Иване Матвеевиче Виноградове и его доказательстве о нечетных чисел, о Льве Генриховиче Шнирельмане и его доказательстве о натуральных числах.
В пункте 11 «Принцип Дирихле» рассказывается об этом математике, формулируется сам принцип и дается его доказательство. Но этот пункт «выходит за рамки программы для 8-го класса с углубленном изучением математики».
В пункте 5 «Координаты точки на прямой линии и на плоскости» главы IV упоминается о Р. Декарте и систем координат, которые он ввел .
В пункте «Теорема Виета» говорится, что доказанна теорема, впервые установленная французским математиком Ф. Виетом».
Хотя этот учебник предназначен для классов с углубленном изучением математике, но исторический материал очень скудный, то есть напечатано всего по одному предложению.
Алгебра 9
класс. Курс начинается с изучения множеств, и здесь рассказывается об истории создания этой области математики Г. Кантором.
Следующая историческая справка встречается через несколько глав при изучении последовательностей. Написано о последовательности Фибоначчи и приводится сноска из истории о нем.
При изучении геометрической прогрессии приводится индийская задача о создателе шахмат и царе.
При изучении комбинаторики упоминается о том, что «аксиоматический метод введения вероятности предложил А.Н. Колмогоров».
Смотрите также::
Изучение уровня развития координации движений в танцевальной деятельности у
детей старшего дошкольного возраста
На шестом году жизни ребёнок физически крепнет, становиться подвижным, успешно овладевает основными движениями, у него хорошая координация движений при ходьбе, беге, прыжках. Совершенствуются процессы нервной высшей деятельности: развивается способность анализировать, обобщать, делать простейшие ум ...
Состояние проблемы
Детство – важнейший период человеческой жизни, это не подготовка к будущей жизни, а настоящая, яркая, самобытная, неповторимая жизнь. И от того как, прошло детство, кто вел ребенка за руку в детские годы, что вошло в его разум и сердце из окружающего мира – от этого в решительной степени зависит, к ...
Самостоятельная деятельность учащихся в
процессе обучения элективному курсу «Ресурсы интернет в помощь филологу»
В условиях модернизации системы образования одной из основных задач школы является формирование ключевых компетенций учащихся. Компетентностный подход предполагает формирование интеллектуальной и исследовательской культуры школьников, создание условий для самоопределения и самореализации потенциаль ...