Существует два подхода к изложению темы «Решение прямоугольных треугольников».
Первый подход основан на запоминании четырёх определений основных тригонометрических функций и ещё шести правил:
1. Катет равен гипотенузе, умноженной на синус противолежащего угла;
2. Катет равен гипотенузе, умноженной на косинус прилежащего угла;
3. Катет равен другому катету, умноженному на тангенс противолежащего угла;
4. Катет равен другому катету, умноженному на котангенс прилежащего угла;
5. Гипотенуза равна катету, делённому на синус противолежащего угла;
6. Гипотенуза равна катету, делённому на косинус прилежащего угла.
Второй подход, в отличие от первого, вынуждает учащихся запомнить лишь четыре определения тригонометрической функции острого угла. Это ведёт к меньшей нагрузке на память. Однако и здесь таятся некоторые трудности для учащихся. Они связаны, во-первых, с выбором нужной функции в условиях конкретной задачи, а во-вторых, с тем, что использование их определений не даёт непосредственного знания нужного элемента треугольника, а лишь приводит к уравнению, из которого этот элемент надо найти. Например:
tg α =, x=, x=ctg α.
Этих трудностей можно избежать, если ввести понятие единичного прямоугольного треугольника.
Назовём этим термином прямоугольный треугольник с гипотенузой, равной единице.
В дальнейшем будем называть его просто единичным треугольником. Пусть один из его острых углов равен α. Тогда очевидно, что длина его противоположного катета равна sin α, а прилежащего – cosα.
Эти сведения ученик должен запомнить, что, в общем-то, несложно, так как всегда синус ассоциируется с противолежащим катетом, а косинус с
прилежащим катетом. Кстати, такой подход обнаруживает эффективный способ вычисления синуса, косинуса и служит пропедевтикой к их определению с помощью единичной окружности.
Пусть теперь дан произвольный прямоугольный треугольник со сторонами k, l, m и острым углом α. Наряду с ним рассмотрим единичный треугольник с таким же углом α. Ясно, что единичный треугольник (пусть длины его сторон равны соответственно k1, l1, m1) подобен данному.
Тогда k: l = k1: l1, k=l (1).
Получено правило нахождения любой стороны прямоугольного треугольника. Сформулируем его следующим образом:
Любая сторона прямоугольного треугольника равна другой стороне, умноженной на отношение сходственных сторон единичного треугольника.
Это правило вобрало в себя все шесть правил, приведенных в начале. Оно легко для запоминания, в нем даже не упоминаются термины: «катет», «гипотенуза», «прилежащие и противолежащие катеты», «синус, косинус, тангенс угла». Ученик не стоит перед необходимостью выбора какого-либо правила, формулы и т.д.
Пример. Пусть дан треугольник, у которого катет равен x, а гипотенуза равна a.
Соответствие сходственных сторон этого треугольника и единичного обозначим стрелками.
xsinα, a1.
Тогда x=a=.
Смотрите также::
Характеристика нормальной осанки
Осанкой называют привычную позу непринужденно стоящего человека, которую он принимает без лишнего мышечного напряжения. При определения осанки учитываются положение головы, пояса верхних конечностей, верхних и нижних конечностей, конфигурация позвоночного столба, угол наклона таза, форма грудной кл ...
Меры по развитию и популяризации в России здорового образа
жизни
В настоящее время проблема популяризации здорового образа жизни, массовых занятий физической культурой и спортом является чрезвычайно актуальной. По данным Всероссийской диспансеризации, проведенной в 2008 году среди детей в возрасте от 0 до 18 лет, лишь 32,1% детей признаны здоровыми, 51,7% имеют ...
Роль компьютерных игр в деятельности детей и подростков
В этом параграфе мы рассмотрим понятия «компьютерных игр», проанализируем педагогический опыт исследователей, раскроем содержание, классификацию игр и их влияние на процесс воспитания детей. Процессы компьютеризации в нашей стране с 90 - х годов прошлого века происходили очень бурно, что повлекло з ...