Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Подобие прямоугольных треугольников

Подобие прямоугольных треугольников

В повседневной жизни встречаются предметы одинаковой формы, но разных размеров, например, футбольный и теннисный мячи, круглая тарелка и большое круглое блюдо. В геометрии фигуры одинаковой формы принято называть подобными. Введём понятие подобных треугольников.

Пусть у двух треугольников ABC и A1B1C1 углы соответственно равны: <A=<A1, <B=<B1, <C=<C1. В этом случае стороны AB и A1B1, BC и B1C1, CA и C1A1 называются сходственными.

Два треугольника называются подобными, если их углы равны и стороны одного треугольника пропорциональны сходственным сторонам другого (рис. 15).

Другими словами, два треугольника подобны, если для них можно ввести обозначения ABC и A1B1C1 так что

<A=<A1, <B=<B1, <C=<C1, (1)

(2).

Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. Обозначается ∆ABC~∆A1B1C1.

Оказывается, что подобие треугольников можно устанавливать, проверив только некоторые из равенств (1) и (2).

У прямоугольного треугольника один угол прямой. Поэтому для подобия прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.

С помощью этого признака подобия прямоугольных треугольников докажем некоторые соотношения в треугольниках.

Пусть ABC – прямоугольный треугольник с прямым углом C. Проведём высоту CD из вершины прямого угла (рис. 16).

Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет его на подобные прямоугольные треугольники, каждый из которых подобен данному треугольнику.

На рисунке ABC – прямоугольный треугольник <ABC=90º, CD ┴AB.

Δ ACD ~ Δ CDB;

Δ ACD ~ Δ ABC;

Δ CDB ~ Δ ABC.

Треугольники ABC и CBD имеют общий угол при вершине B. Следовательно, они подобны ∆ABC~∆ CBD. Из подобия треугольников следует пропорциональность соответствующих сторон:

, или , а отсюда следует, что . Это соотношение обычно формулируется так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

Прямоугольные треугольники ACD и CBD также подобны. У них равные острые углы при вершинах A и C. Из подобия этих треугольников следует пропорциональность их сторон:

или , а отсюда следует, что . Это соотношение обычно формулируется так: высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу.


Смотрите также::

Взгляды отечественных и зарубежных психологов на проблему профессиональной направленности старшеклассников
Выбор человеком для себя системы ценностей, норм морали, форм поведения, образа жизни и др. делает его развитой самостоятельной личностью. Понимание самоопределения обычно происходит в юности, хотя процесс начинается еще в подростковом возрасте и проявляет себя через опробование различных социальны ...

Методы развития творческих способностей у детей
Есть великая формула «дедушки» космонавтики К.Э. Циолковского, приоткрывающая завесу над тайной рождения творческого ума: «Сначала я открывал истины, известные многим, затем стал открывать истины, известные некоторым, и, наконец, стал открывать истины, никому еще не известные». Видимо, это и есть п ...

Опыт деятельности по профориентации школьников Красноярского краевого центра профессиональной ориентации молодежи
Практика показывает, что развернуть профориентационную работу с молодежью в должном объеме возможно только совместными усилиями органов образования, учебных заведений, предприятий, организаций и государственных учреждений. Одним из таких государственных учреждений, основная деятельность, которого н ...

Разделы

Copyright © 2025 - All Rights Reserved - www.edumask.ru