Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Подобие прямоугольных треугольников

Подобие прямоугольных треугольников

В повседневной жизни встречаются предметы одинаковой формы, но разных размеров, например, футбольный и теннисный мячи, круглая тарелка и большое круглое блюдо. В геометрии фигуры одинаковой формы принято называть подобными. Введём понятие подобных треугольников.

Пусть у двух треугольников ABC и A1B1C1 углы соответственно равны: <A=<A1, <B=<B1, <C=<C1. В этом случае стороны AB и A1B1, BC и B1C1, CA и C1A1 называются сходственными.

Два треугольника называются подобными, если их углы равны и стороны одного треугольника пропорциональны сходственным сторонам другого (рис. 15).

Другими словами, два треугольника подобны, если для них можно ввести обозначения ABC и A1B1C1 так что

<A=<A1, <B=<B1, <C=<C1, (1)

(2).

Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. Обозначается ∆ABC~∆A1B1C1.

Оказывается, что подобие треугольников можно устанавливать, проверив только некоторые из равенств (1) и (2).

У прямоугольного треугольника один угол прямой. Поэтому для подобия прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.

С помощью этого признака подобия прямоугольных треугольников докажем некоторые соотношения в треугольниках.

Пусть ABC – прямоугольный треугольник с прямым углом C. Проведём высоту CD из вершины прямого угла (рис. 16).

Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет его на подобные прямоугольные треугольники, каждый из которых подобен данному треугольнику.

На рисунке ABC – прямоугольный треугольник <ABC=90º, CD ┴AB.

Δ ACD ~ Δ CDB;

Δ ACD ~ Δ ABC;

Δ CDB ~ Δ ABC.

Треугольники ABC и CBD имеют общий угол при вершине B. Следовательно, они подобны ∆ABC~∆ CBD. Из подобия треугольников следует пропорциональность соответствующих сторон:

, или , а отсюда следует, что . Это соотношение обычно формулируется так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

Прямоугольные треугольники ACD и CBD также подобны. У них равные острые углы при вершинах A и C. Из подобия этих треугольников следует пропорциональность их сторон:

или , а отсюда следует, что . Это соотношение обычно формулируется так: высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу.


Смотрите также::

Игра как вид обучающей деятельности
Игра – это вид деятельности в условиях ситуаций, направленных на воссоздание и усвоение общественного опыта, в котором складывается и совершенствуется самоуправление поведением. В структуру игры как деятельности личности входят этапы: целеполагания; планирования; реализации цели; анализа результато ...

Опыт деятельности образовательных учреждений по профессиональной ориентация школьников
В мае 2007 года было проведено анкетирование учеников 9 – 11 классов общеобразовательных школ города Красноярска. Целью данного исследования является выявление проблем профессиональной ориентации данной категории. В качестве выборки использовалась вероятностная выборка. В анкетировании приняло учас ...

Анализ результатов и эффективность работы учителей по использованию инновационных педагогических технологий на уроках
Нами был проведён опрос среди педагогов школы №7 г. Волковыска. Учителям был задан вопрос: какие инновационные педагогические технологии вы чаще всего используете на уроках математики: Игровые технологии Технология проблемного обучения Технология «Шаг за шагом» Технология модульного обучения Технол ...

Разделы

Copyright © 2025 - All Rights Reserved - www.edumask.ru