Значение её состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Одна из теорем позволяет убедиться в том, что если из точки вне прямой проведены к ней перпендикуляр и наклонные, то: а) наклонные равны, если равны их проекции; б) та наклонная больше, которая имеет большую проекцию.
Теорема Пифагора была первым утверждением, связавшим длины сторон треугольников. Потом узнали, как находить длины сторон и углы остроугольных и тупоугольных треугольников. Возникла целая наука тригонометрия («тригон» – по-гречески означает «треугольник»). Эта наука нашла применение в землемерии. Но еще раньше с ее помощью научились измерять воображаемые треугольники на небе, вершинами которых были звезды. Сейчас тригонометрию применяют даже для измерения расстояний между космическими кораблями.
Пользуясь свойствами площадей многоугольников, мы установим теперь замечательное соотношение между гипотенузой и катетами прямоугольного треугольника. Теорема, которую мы докажем, называется теоремой Пифагора, которая является важнейшей теоремой геометрии.
Если дан нам треугольник,
И при том с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдем:
Катеты в квадрат возводим,
Сумму степеней находим
И таким простым путем
К результату мы придем.
Теорема. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Доказательство. Рассмотрим прямоугольный треугольник с катетами a, b и c (рис. 9 а).
Докажем, что c2 = a2 + b2. Достроим треугольник до квадрата со стороной a+b, так как показано на рисунке (рис. 9 б).
Площадь такого квадрата со стороной a + b равна (a + b)2. С другой стороны, этот квадрат составлен из четырёх равных прямоугольных треугольников, площадь которых равна
ab, и квадрат со стороной с, поэтому
.
Таким образом, (a + b)2 =2ab + c2, откуда c2 = a2 + b2.
Что и требовалось доказать.
Следствие 1. В прямоугольном треугольнике любой из катетов меньше гипотенузы.
Доказательство. По теореме Пифагора АВ2 = АС2 + ВС2. Так как ВС2>0, то АС2<АВ, То есть АС<АВ.
Следствие 2. Для любого острого угла α cosα <1.
Докзательсво. По определению косинуса cosα =
. Но в следствии 1 было доказано, что АС<АВ, значит, дробь меньше 1.
Прямоугольные треугольники, у которых стороны выражаются целыми числами, называются пифагоровыми треугольниками.
Можно доказать, что катеты a, b и гипотенуза c таких треугольников выражаются формулами a=2kmn; b=k(m2-n2); c=k(m2+n2), где k, m и n – натуральные числа, такие, что m>n. Треугольники, со сторонами, длины которых равны 3, 4, 5 называются египетскими треугольниками, т. к. они были известны ещё древним египтянам.
Обратная к теореме Пифагора.
Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный (признак прямоугольного треугольника).
Доказательство.
Пусть в треугольнике ABC AB2 = AC2 + BC2. Докажем, что угол C – прямой. Рассмотрим прямоугольный треугольник A1B1C1 с прямым углом C1, у которого A1C1 = AC и B1C1 = BC. По теореме Пифагора A1B12=A1C12+B1C12, и значит, A1B12 = AC2 +BC2. Но AC2 + BC2 = AB2 по условию теоремы. Следовательно, A1B12 = AB2, откуда A1B1 = AB. Треугольники ABC и A1B1C1 равны по трём сторонам, поэтому < C = < C1, то есть треугольник ABC прямоугольный с прямым углом C.
Смотрите также::
Содержание словарной работы
На первое место в словарной работе выдвигается положение о том, что слова является важнейшей единицей языка, которая служит для наименования предметов, процессов, свойств, а работ над словом является одной из важных в общей системе работы по развитию речи. Овладение словарным составом родного языка ...
Наглядные методы воспитания правильной осанки у детей
дошкольного возраста
Серия картинок "Что такое хорошо, что такое плохо" предназначена для занятий с детьми младшего и старшего дошкольного возраста в детском саду. Цель занятий - дать детям соответственно их возрасту знания о правильной осанке. На рисунках изображены 6 положительных и 6 отрицательных моментов ...
Теоретические основы развития игры
Ребенок, играя, все время стремиться вперед, а не назад. В играх дети все как бы делают втроем: их подсознание, их разум, их фантазии «работают» синхронно, участвуют в осмыслении и отражении мира постоянно. Американский психолог Джордж Мид увидел в игре обобщенную модель формирования того, что псих ...