Рассмотрим свойства прямоугольных треугольников, которые устанавливаются с помощью теоремы о сумме углов треугольника.
В прямоугольном треугольнике гипотенуза больше катета (следствие из теоремы о соотношении между сторонами и углами в треугольнике).
1°. Сумма двух острых углов прямоугольного треугольника равна 90°.
В самом деле, сумма углов треугольника равна 180°, а прямой угол равен 90°, поэтому сумма двух острых углов прямоугольного треугольника равна 90°.
2°. Катет прямоугольного треугольника, лежащего против угла в 30º, равен половине гипотенузы.
Пусть ABC – прямоугольный треугольник с прямым углом C и углом B равным 30º, а значит, угол A равен 60° (рис. 3). Построим треугольник DBC равный треугольнику ABC, как показано на рисунке. У треугольника ABD все углы равны (60º), поэтому он равносторонний.
Так как AC=AD, а AD=AB, то AC=
AB.
Что и требовалось доказать.
3°. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30º (обратная теорема).
Рассмотрим прямоугольный треугольник ABC, у которого катет AC равен половине гипотенузы AC (рис. 4 а). Докажем, что <ABC = 30°.
Приложим к треугольнику ABC равный ему треугольник DBC так, как показано на рисунке 4 б). Получим равносторонний треугольник DBA. Углы равностороннего треугольника равны друг другу, поэтому каждый из них равен 60°. В частности < DBA=60°. Но <DBA=2<ABC. Следовательно, <ABC=30°.
Что и требовалось доказать.
Смотрите также::
Теорема Пифагора
Значение её состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Одна из теорем позволяет убедиться в том, что если из точки вне прямой проведены к ней перпендикуляр и наклонные, то: а) наклонные равны, если равны их проекции; б) та наклонная больше, которая имеет ...
Содержание словарной работы
На первое место в словарной работе выдвигается положение о том, что слова является важнейшей единицей языка, которая служит для наименования предметов, процессов, свойств, а работ над словом является одной из важных в общей системе работы по развитию речи. Овладение словарным составом родного языка ...
Вклад в развитие художественных учебных заведений
В этой главе хотелось бы несколько подробнее рассказать о тех художественных заведениях, куда вложил большую часть себя Василий Васильевич Кандинский. В данном случае можно рассматривать этот вклад как непосредственный вклад в образование. Да что там! Если речь идет о крупных учебных мастерских, ко ...