В учебнике по математике для 5 класса Дорофеева Г. В., Петерсон Л. Г. уже во втором параграфе предлагается для изучения тема «Математические модели», поэтому далее весь материал опирается на понятия «математическая модель» и «моделирование».
Авторы не дают определение модели, а на примере двух задач показывают, что в двух непохожих ситуациях используется одна и та же математическая модель, сразу указывая на ценность математического моделирования, что одна и та же модель может описывать различные явления. Для того чтобы построить математическую модель, надо, прежде всего, научиться переводить условия задач на математический язык.
Самая распространенная формулировка заданий, характерная для метода моделирования, звучит следующим образом:
переведи условие задачи на математический язык;
построй математическую модель задачи и реши ее.
Далее говорится, что после перевода задачи на математический язык поиск решения сводится к работе с математическими моделями – к вычислениям, преобразованиям, рассуждениям.
В 6 классе выделяются этапы процесса математического моделирования, в соответствии с этими этапами выделяются этапы решения задач с помощью уравнений.
Большое внимание уделяется этапу формализации, который вызывает у школьников наибольшие трудности при решении задач.
В учебниках понятия «модель» и «моделирование» не вводятся ни в 5, ни в 6 классах, соответственно нет задач с формулировкой, характерной для метода моделирования.
В учебнике небольшое внимание уделяется математическому языку, но не встречаются сюжетные задачи, требующие перевода условия задачи с русского на математический язык.
В учебнике изучаются темы «Математический язык», «Математическая модель». Как и в учебнике понятие модели вводится с помощью рассмотрения двух задач, в которых требуется найти значение одного и того же выражения. Выражение, полученное в процессе решения, - это математическая модель реальной жизненной ситуации, о которой говорится в задаче.
Авторы пишут: «Выполняя задания по переводу «обычной» речи на математический язык, мы каждый раз составляли математическую модель данной ситуации. Однако важно не только уметь составлять математические модели, но и выполнять обратную работу – понимать, какую ситуацию (или обстоятельства) описывает данная модель». Так неявно выделяются этапы моделирования: формализация и интерпретация.
Но следует отметить, что задачи, в которых требуется построить математическую модель, встречаются в учебниках очень редко.
Смотрите также::
Дидактические принципы математики
Общие положения Дидактические принципы – исходные положения теории обучения, выражающие основные закономерности процесса обучения. Они определяются целями обучения и воспитания, потребностями общественного развития, особенностями учебной деятельности учащихся различных возрастов. Дидактические прин ...
Педагогические функции хореографического коллектива
На первых этапах своего существования любой хореографический коллектив состоит из руководителя коллектива и его учеников. Впоследствии, по мере роста коллектива, увеличения числа танцевальных постановок, осуществления масштабных проектов (хореографические спектакли, шоу программы, мюзиклы) увеличив ...
Проведение развивающей работы с детьми старшего дошкольного возраста
Подвижные игры были включены в разные формы работы по физическому воспитанию такие как: физкультурное занятие (на воздухе и в зале), утренняя гимнастика, прогулка, на занятиях стретчингового типа, вечера досуга, динамические паузы и др. На каждом физкультурном занятии мы использовали подвижные игры ...