В учебнике по математике для 5 класса Дорофеева Г. В., Петерсон Л. Г. уже во втором параграфе предлагается для изучения тема «Математические модели», поэтому далее весь материал опирается на понятия «математическая модель» и «моделирование».
Авторы не дают определение модели, а на примере двух задач показывают, что в двух непохожих ситуациях используется одна и та же математическая модель, сразу указывая на ценность математического моделирования, что одна и та же модель может описывать различные явления. Для того чтобы построить математическую модель, надо, прежде всего, научиться переводить условия задач на математический язык.
Самая распространенная формулировка заданий, характерная для метода моделирования, звучит следующим образом:
переведи условие задачи на математический язык;
построй математическую модель задачи и реши ее.
Далее говорится, что после перевода задачи на математический язык поиск решения сводится к работе с математическими моделями – к вычислениям, преобразованиям, рассуждениям.
В 6 классе выделяются этапы процесса математического моделирования, в соответствии с этими этапами выделяются этапы решения задач с помощью уравнений.
Большое внимание уделяется этапу формализации, который вызывает у школьников наибольшие трудности при решении задач.
В учебниках понятия «модель» и «моделирование» не вводятся ни в 5, ни в 6 классах, соответственно нет задач с формулировкой, характерной для метода моделирования.
В учебнике небольшое внимание уделяется математическому языку, но не встречаются сюжетные задачи, требующие перевода условия задачи с русского на математический язык.
В учебнике изучаются темы «Математический язык», «Математическая модель». Как и в учебнике понятие модели вводится с помощью рассмотрения двух задач, в которых требуется найти значение одного и того же выражения. Выражение, полученное в процессе решения, - это математическая модель реальной жизненной ситуации, о которой говорится в задаче.
Авторы пишут: «Выполняя задания по переводу «обычной» речи на математический язык, мы каждый раз составляли математическую модель данной ситуации. Однако важно не только уметь составлять математические модели, но и выполнять обратную работу – понимать, какую ситуацию (или обстоятельства) описывает данная модель». Так неявно выделяются этапы моделирования: формализация и интерпретация.
Но следует отметить, что задачи, в которых требуется построить математическую модель, встречаются в учебниках очень редко.
Смотрите также::
Востребованность этих признаков в современной школе и значение изучения
проблемы
И воспитание, и образование неразделимы. Нельзя воспитывать, не передавая знания, всякое же знание действительно воспитательно. Свобода есть необходимое условие всякого истинного образования как для учащихся, так и для учащих, то есть и угрозы наказаний и обещания наград, обуславливающих приобретен ...
Состояние агрессивности у младших школьников с нарушением интеллекта
Для определения уровня развития агрессивности у младших школьников с нарушением интеллекта мы использовали с детьми второго и третьего класса блок психодиагностических методик: 1) изучение личных дел учащихся; 2) методика рисуночной фрустрации С. Розенцвейга; 3) интерпретативная проективная методик ...
Подготовка лекций по праву
Подготовка к лекции предполагает несколько важных условий и основных стадий: знание преподавателем основных положений философии как пауки о наиболее общих законах и закономерностях развития природы и общества как теоретической и методологической основы любой отрасли научного знания; глубокое и всес ...