В учебнике по математике для 5 класса Дорофеева Г. В., Петерсон Л. Г. уже во втором параграфе предлагается для изучения тема «Математические модели», поэтому далее весь материал опирается на понятия «математическая модель» и «моделирование».
Авторы не дают определение модели, а на примере двух задач показывают, что в двух непохожих ситуациях используется одна и та же математическая модель, сразу указывая на ценность математического моделирования, что одна и та же модель может описывать различные явления. Для того чтобы построить математическую модель, надо, прежде всего, научиться переводить условия задач на математический язык.
Самая распространенная формулировка заданий, характерная для метода моделирования, звучит следующим образом:
переведи условие задачи на математический язык;
построй математическую модель задачи и реши ее.
Далее говорится, что после перевода задачи на математический язык поиск решения сводится к работе с математическими моделями – к вычислениям, преобразованиям, рассуждениям.
В 6 классе выделяются этапы процесса математического моделирования, в соответствии с этими этапами выделяются этапы решения задач с помощью уравнений.
Большое внимание уделяется этапу формализации, который вызывает у школьников наибольшие трудности при решении задач.
В учебниках понятия «модель» и «моделирование» не вводятся ни в 5, ни в 6 классах, соответственно нет задач с формулировкой, характерной для метода моделирования.
В учебнике небольшое внимание уделяется математическому языку, но не встречаются сюжетные задачи, требующие перевода условия задачи с русского на математический язык.
В учебнике изучаются темы «Математический язык», «Математическая модель». Как и в учебнике понятие модели вводится с помощью рассмотрения двух задач, в которых требуется найти значение одного и того же выражения. Выражение, полученное в процессе решения, - это математическая модель реальной жизненной ситуации, о которой говорится в задаче.
Авторы пишут: «Выполняя задания по переводу «обычной» речи на математический язык, мы каждый раз составляли математическую модель данной ситуации. Однако важно не только уметь составлять математические модели, но и выполнять обратную работу – понимать, какую ситуацию (или обстоятельства) описывает данная модель». Так неявно выделяются этапы моделирования: формализация и интерпретация.
Но следует отметить, что задачи, в которых требуется построить математическую модель, встречаются в учебниках очень редко.
Смотрите также::
Психолого-педагогические особенности детей и подростков, увлеченных
компьютерными играми
Задача параграфа является: раскрытие возрастных особенностей детей и подростков, увлеченных компьютерными играми. Уровень развития, характеризующий детей подросткового возраста, не является постоянным. Он растет и изменяется вместе с изменением условий жизни общества. Современный подросток всесторо ...
Дифференциация интонационных структур предложений в экспрессивной речи
Дети обучаются передавать основные виды интонаций (интонации завершенности, незавершенности, вопроса, восклицания) с помощью гласных звуков. При этой работе также активно подключаются жесты, которые определенным образом помогают осмыслить различные виды интонации. Работа над интонацией начинается с ...
Компьютерная зависимость как результат увлеченностью компьютерными играми
Задача параграфа: раскрыть понятие «компьютерная зависимость», проанализировать влияние компьютерной зависимости на процесс воспитания детей, выявить стадии компьютерной зависимости. Термин «компьютерная зависимость» определяет патологическое пристрастие человека к работе или проведению времени за ...